Lesiones ligamentosas de rodilla.indd - repositorium – Uminho

Loading...

José A. Hernández Hermoso Juan C. Monllau García

Lesiones ligamentosas de la rodilla

L

9 788415 340263

ISBN 978-84-15340-26-3

Lesiones ligamentosas de la rodilla

as lesiones de los ligamentos de la rodilla, y en concreto las del ligamento cruzado anterior, son algunas de las más habituales en traumatología deportiva. En la última década se han producido avances en la reconstrucción de los diferentes ligamentos de la rodilla, en el conocimiento de la biología y de la biomecánica de la incorporación de los injertos, en nuevos materiales y dispositivos para su fijación, y en nuevas pautas de rehabilitación. A pesar de ello, todavía no hay consenso sobre cómo prevenir estas lesiones, cuál es la mejor técnica para tratar o reconstruir los ligamentos, qué injerto es mejor, el dispositivo de fijación más fiable, cómo estimular la biología, qué pauta de rehabilitación es más efectiva y adecuada, o de qué modo analizar de forma objetiva los resultados. Además, es difícil comparar los resultados obtenidos en los estudios debido al gran número de variables que pueden influir en ellos, y que son tremendamente difíciles de homogeneizar. En este libro se revisa el estado actual del conocimiento, haciendo hincapié en los temas más controvertidos sobre los cuales no hay consenso, ante los que cada autor establece su opción.

Lesiones ligamentosas de la rodilla José A. Hernández Hermoso Juan C. Monllau García

Lesiones ligamentosas de rodilla.indd 1

24/05/2012 18:12:39

Lesiones ligamentosas de rodilla.indd 2

24/05/2012 18:12:39

Lesiones ligamentosas de la rodilla

Lesiones ligamentosas de rodilla.indd 3

24/05/2012 18:12:40

Lesiones ligamentosas de rodilla.indd 4

24/05/2012 18:12:40

Lesiones ligamentosas de la rodilla

Coordinadores: José A. Hernández Hermoso Joan C. Monllau García

Lesiones ligamentosas de rodilla.indd 5

24/05/2012 18:12:40

Lesiones ligamentosas de la rodilla Coordinadores: José A. Hernández Hermoso, Joan C. Monllau García 1.ª edición 2012 © de esta edición, incluido el diseño de la cubierta, ICG Marge, SL Edita: Marge Médica Books - València, 558, ático 2.ª - 08026 Barcelona (España) www.marge.es - Tel. +34-932 449 130 - Fax +34-932 310 865 Director editorial: Hèctor Soler Gestión editorial: Ana Soto, Anna Palacios Edición: Rosa Serra, David Soler Colaboración técnica: Carmen Company Compaginación: Mercedes Lara Impresión: Novoprint (Sant Andreu de la Barca, Barcelona) ISBN: 978-84-15340-26-3 Depósito Legal: B-10.081-2012 Reservados todos los derechos. Ninguna parte de esta edición, incluido el diseño de la cubierta, puede ser reproducida, almacenada, transmitida, distribuida, utilizada, comunicada públicamente o transformada mediante ningún medio o sistema, bien sea eléctrico, químico, mecánico, óptico, de grabación o electrográfico, sin la previa autorización escrita del editor, salvo excepción prevista por la ley. Diríjase a Cedro (Centro Español de Derechos Reprográficos, www.cedro.org) si necesita fotocopiar, escanear o hacer copias digitales de algún fragmento de esta obra.

Lesiones ligamentosas de rodilla.indd 6

24/05/2012 18:12:40

Índice

Autores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

Prólogo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

Capítulo 1 Lesión del ligamento cruzado anterior de la rodilla ¿Por qué se rompe? ¿Puede prevenirse? L. Til . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

Capítulo 2 Inmunomodulación en la reconstrucción del ligamento cruzado anterior. Una nueva frontera en la biología de la cicatrización R. Iñigo Pavlovich, J. Lozano Pardinas . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

Capítulo 3 Biomecánica y propiocepción después de la reconstrucción de una lesión ligamentosa E. Gómez-Barrena, N. Bonsfills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

Chapter 4 Advances in anterior cruciate ligament reconstruction A. Silva, R. Sampaio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

Chapter 5 Anterior cruciate ligament repair in children and adolescents D. Holsten, K.-H. Frosch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

73

Lesiones ligamentosas de rodilla.indd 7

24/05/2012 18:12:40

8

Capítulo 6 Laxitud combinada posterolateral y medial M. Leyes Vence, M. González Salvador, A. Cruz Cámara . . . . . . . . . . . . . .

Índice

89

Capítulo 7 Luxación de rodilla J.A. Hernández Hermoso, F. Aliaga Orduña, J. Asencio Santotomás . . . . . 107 Chapter 8 Long term outcomes of combined anterior cruciate ligament and allograft meniscus transplantation R. Verdonk, P. Verdonk, F. Steenbrugge . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Capítulo 9 Algoritmo de actuación y resultados en la infección tras la cirugía del ligamento cruzado anterior de la rodilla J. Leal-Blanquet, R. Torres-Claramunt, X. Pelfort . . . . . . . . . . . . . . . . . . . 141 Capítulo 10 Tratamiento de la artrofibrosis tras la cirugía ligamentosa D. Popescu, F. Maculé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Capítulo 11 Cirugía de revisión del ligamento cruzado anterior J.C. Monllau, P.E. Gelber, X. Pelfort, M. Tey, J. Erquicia . . . . . . . . . . . . . . 169 Chapter 12 New tools for diagnosis, assessment of surgical outcome and follow-up H. Pereira, N. Sevivas, R. Pereira, A. Monteiro, J.M. Oliveira, R.L. Reis, J. Espregueira-Mendes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Capítulo 13 Rehabilitación tras la cirugía ligamentosa de la rodilla en el deportista de élite A. Sánchez Ramos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Lesiones ligamentosas de rodilla.indd 8

24/05/2012 18:12:40

Autores

Francisco Aliaga Orduña Servicio de Cirugía Ortopédica y Traumatología Hospital Universitari Germans Trias i Pujol Universitat Autònoma de Barcelona Badalona (Barcelona) Jordi Asencio Santotomás Servicio de Cirugía Ortopédica y Traumatología Hospital Universitari Germans Trias i Pujol Universitat Autònoma de Barcelona Badalona (Barcelona) Nuria Bonsfills García Servicio de Cirugía Ortopédica y Traumatología Hospital Universitario Infanta Sofía Madrid Antonio Cruz Cámara Mutua Montañesa Santander

Lesiones ligamentosas de rodilla.indd 9

Juan Erquicia Institut Català de Traumatologia i Medicina de l’Esport (ICATME) Institut Universitari Dexeus Universitat Autònoma de Barcelona Barcelona

João Espregueira-Mendes 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Taipas (Guimarães), Portugal

Karl-Heinz Frosch Department of Trauma and Reconstructive Surgery Asklepios Clinic St. Georg Hamburg, Germany

24/05/2012 18:12:40

10

Pablo E. Gelber Ghertner Unidad de Rodilla Servicio de Cirugía Ortopédica y Traumatología Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona Enrique Gómez-Barrena Servicio de Cirugía Ortopédica y Traumatología Hospital Universitario La Paz Universidad Autónoma de Madrid Madrid María González Salvador Cirugía Ortopédica Clínica CEMTRO Madrid José A. Hernández Hermoso Servicio de Cirugía Ortopédica y Traumatología Hospital Universitari Germans Trias i Pujol Universitat Autònoma de Barcelona Badalona (Barcelona) Dirk Holsten Clinic of Sports Orthopedics/Trauma Surgery/Arthroscopic Surgery Katholisches Klinikum Brüderhaus Koblenz, Germany Rafael Iñigo Pavlovich BIO5 Institute University of Arizona, Thomas W. Keating Bioresearch Building Arizona, EEUU

Lesiones ligamentosas de rodilla.indd 10

Autores

Joan Leal-Blanquet Servicio de Cirugía Ortopédica y Traumatología Parc de Salut Mar Hospital Mar/Esperanza Barcelona Manuel Leyes Vence Cirugía Ortopédica Clínica CEMTRO Madrid Javier Lozano Pardinas CIMOT Ortopedia y Traumatología Hospital Metropolitano México DF, México Francisco Maculé Beneyto Sección de Rodilla Servicio de Cirugía Ortopédica y Traumatología Hospital Clínic de Barcelona Barcelona Joan Carles Monllau García Unidad de Rodilla Servicio de Cirugía Ortopédica y Traumatología Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona Alberto Monteiro Saúde Atlântica Sports Centre – F.C. Oporto Stadium University of Minho and University of Porto Portugal

24/05/2012 18:12:40

Autores

Joaquim M. Oliveira 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Taipas (Guimarães), Portugal Xavier Pelfort Unidad de Rodilla Servicio de Cirugía Ortopédica y Traumatología Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona Hélder Pereira 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Taipas (Guimarães), Portugal Rogério Pereira Saúde Atlântica Sports Centre – F.C. Oporto Stadium University of Minho and University of Porto Portugal

Lesiones ligamentosas de rodilla.indd 11

11

Dragos Popescu Sección de Rodilla Servicio de Cirugía Ortopédica y Traumatología Hospital Clínic de Barcelona Barcelona Rui L. Reis 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Taipas (Guimarães), Portugal Ricardo Sampaio Imaging Department Hospital da Boavista Oporto, Portugal Ángel Sánchez Ramos Centro de Rehabilitación y Medicina del Deporte Eurosport Barcelona Nuno Sevivas ICVS/3B’s – PT Government Associate Laboratory Braga/Guimarães, Portugal Alcindo Silva Orthopaedics Department Hospital Militar D. Pedro V Oporto, Portugal

24/05/2012 18:12:40

Chapter 12

New tools for diagnosis, assessment of surgical outcome and follow-up H. PEREIRA,1-4 N. SEVIVAS,2,3,5 R. PEREIRA,3 A. MONTEIRO,3 J.M. OLIVEIRA,1,2 R.L. REIS,1,2 J. ESPREGUEIRA-MENDES1-3 1

2

3B’s Research Group – Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Taipas (Guimarães) Portugal

3

Saúde Atlântica Sports Centre – F.C. Oporto Stadium University of Minho and University of Porto Braga and Porto Portugal

4

Orthopaedic Department Centro Hospitalar Póvoa de Varzim Vila do Conde Portugal

ICVS/3B’s - PT Government Associate Laboratory Braga/Guimarães Portugal

5

Orthopaedic Department Hospital de Braga Braga Portugal Correspondence Hélder Pereira [email protected]

Synopsis Objective evaluation of antero-posterior and rotatory laxity of the knee is a critical issue in anterior cruciate ligament (ACL) research. This is essential to allow surgeons to rigorously evaluate the outcome of the different available techniques. Furthermore it will make it possible to carry out advance predic-

Lesiones ligamentosas de rodilla.indd 185

24/05/2012 18:13:20

186

H. Pereira, N. Sevivas, R. Pereira, A. Monteiro, J.M. Oliveira, R.L. Reis, J. Espregueira-Mendes

tions of which patients can benefit from a particular approach, i.e. partial reconstructions, single- or double-bundle techniques. The ideal method should be able to assess anatomic and functional features of the ACL-deficient knee, besides being accurate, reproducible and cost-effective. This is an overview of the most recent achievements and the scientific-technical considerations in this particular area of research. This chapter presents the advantages and limitations of robotic systems and manual instrumented devices compared to manual tests that are commonly used in the clinical setting. It also highlights the Porto-knee testing device as a new tool to assess laxity in ACL-deficient knee during magnetic resonance imaging. Insights of intraoperative navigation-assisted tools are also considered.

Introduction Today, it is globally recognised that anterior cruciate ligament (ACL) has two functional bundles: the anteromedial (AM) bundle (mainly resisting anterior tibial translation) and posterolateral (PL) bundle (primarily restrains against rotatory laxity).1 This concept revolutionised ACL repair by inducing more “anatomic” single- or double-bundle reconstructions2,3 and renewed interest in augmentation/ partial repair procedures.4 Prevention of arthritis remains to be a target for ACL reconstruction but presently patients have higher expectations and demand the complete repair of anatomy and functional recovery including highly demanding activities.5,6 The influence of ACL in joint stability under torsional load has not been completely established.7 Several studies3,7,8 concerning clinical outcomes of doublebundle ACL reconstruction have been reported, but measuring the improvements in clinical outcomes compared to single-bundle reconstruction has proven to be a difficult task.3 Subjective clinical evaluation including manual tests is not suitable to compare results of “standard” ACL single-bundle repair with more anatomic double-bundle reconstruction.9 The ideal tool to evaluate the knee should be a means to assess both the “anatomy” and the “function” in the same examination. Furthermore it should make it possible to measure anteroposterior translation and rotation, be cost-effective, accurate and possible to reproduce. We have proven in the past that it is effective in restoring anteroposterior instability but there are still doubts concerning the surgical effectiveness to systematic

Lesiones ligamentosas de rodilla.indd 186

24/05/2012 18:13:21

New tools for diagnosis, assessment of surgical outcome and follow-up

187

control rotation, particularly during pivoting sports. However, as in the past, our efforts can only be expected to accomplish success once we are provided with the proper tools to measure the effects of our advances or changes. Partial ruptures present some interesting features such as less aggressive surgery and respect for biology,4,10 justifying the increased interest for this concept. However these lesions are particularly difficult to recognise pre-operatively11 and the status quo of the remaining bundle (biologic and biomechanical) is also a problematic issue. For all the aforementioned reasons, a greater interest in ACL research has been noticed namely in respect to the development of better tools aimed at: 1) identifying risk factors; 2) assisting in decision making with regard to treatment options (surgical or conservative treatment, best patient-matched technique); and 3) identifying partial ruptures (including the biomechanical status of the remaining bundle).

1 Methods for the assessment of anatomical and functional features of the ACL-deficient knee 1.1 Clinical examination of the knee – Manual tests The most commonly used clinical manoeuvres to assess laxity in the ACL-deficient knee are Lachman and pivot-shift tests. These methods are currently used for “in office” diagnosis and the evaluation of repair. However, manual examinations are influenced by surgeon’s training and personal experience and training12 and although the pivot-shift test is a better predictor of clinical outcomes when compared to any uniplanar examination, the Lachman test is still the most commonly used.13-15 It has been shown that the Lachman test is not especially consistent across examiners.16 The performance of the pivot-shift is more reliable either when described as a ‘‘feeling’’ of abnormal movement or based on results of instrumented measures. It must also be considered that besides the variability inherent to examiners hands, there are also different techniques to reproduce this test, which have been widely used worldwide (including Losee, Noyes, Jakob, Hughston).17 The application of combined internal rotation and valgus torques to the knee can more precisely recreate the anterolateral subluxation that occurs in the knee joint during

Lesiones ligamentosas de rodilla.indd 187

24/05/2012 18:13:21

188

H. Pereira, N. Sevivas, R. Pereira, A. Monteiro, J.M. Oliveira, R.L. Reis, J. Espregueira-Mendes

the pivot-shift test.18 The amount of force applied has inter- and intra-examiner variation. Furthermore, limitations of the pivot-shift test, particularly in a awake patient must be considered. It has also been acknowledged that mechanised pivotshift achieves greater accuracy compared to manual testing.19

1.2 Manual instrumented devices Manual instrumented tests aim to be more objective than manual examination alone. It also provides results that can be easily shared and analysed. Furthermore, most devices are easy to carry and can still be used “in office”. However they also share some limitations, such as the absence of bony landmarks to consider, that they are operator-dependent and influenced by muscle guarding. Several arthrometers have been proposed, which reflects the need to develop an objective method to quantify anteroposterior translation and the rotatory laxity of the knee joint for diagnostic purposes, detecting risk factors and controlling surgical outcomes. Since the first report,20 the KT-1000TM laximeter (MEDmetric®, San Diego, CA, USA) is the most widely used knee ligament testing system because it is user-friendly. Actually, this instrument is still the reference that new devices have been tested against.21 However, this is an operator-dependent device, it does not measure rotation and it has also been associated with false negative results and questionable reproducibility.22,23 The KT-2000TM ligament arthrometer (MEDmetric® Corp) uses the same method as the KT-1000TM. But the main difference concerns the data output, which includes a graphic presentation of the amount of tibial displacement relative to the magnitude of applied force via an X-Y plotter. Besides KT-1000TM and KT-2000TM,24 some other devices are commercially available. These include the CA-4000 Electrogoniometer (OSI, Hayward, CA),25 the Genucom Knee Analysis System (FARO Medical Technologies, Montreal, Ontario Canada),26 the Kneelax3 (Monitored Rehab Systems, Haarlem, The Netherlands),27 the Rolimeter (Aircast Europa, Neubeuern, Germany),28 and the Stryker Knee Laxity Tester (Stryker, Kalamazoo, MI).29,30 All these devices have similar limitations (intraclass correlation coefficient [ICC], 0.6) and have not proven to be more effective than the clinical examination.24 However they can provide objective measurements that facilitate data processing and sharing information.

Lesiones ligamentosas de rodilla.indd 188

24/05/2012 18:13:21

New tools for diagnosis, assessment of surgical outcome and follow-up

A-P translation Rotation

189

Publication year

Study type

Park et al.,35 2008

Clinical



+

Knee at 60° of flexion; women have increased external rotation laxity

Tsai et al.,34 2008

Clinical



+

Reliability of a device to measure knee rotation in healthy human subjects

Robert et al.,21 2009

Clinical

+



Does not assess rotation; performed in 0° rotation; reproducibility better than KT1000TM; possibility to identify partial ruptures

Branch et al.,12 2010

Clinical



+

Knees with greater tibial internal rotation have higher risk for ACL injury; women have increased external rotation laxity

Mayr et al.,33 2011

Clinical

+

+

Knee flexion of 30° with varus/valgus stress posts for the knee. Tibial external/ internal rotation was imposed with a torque of 2 Nm on the footrest with the ankle locked in dorsiflexion; differentiate isolated ACL rupture and ACL rupture combined with medial instability

Woo et al.,31 2009

Cadaveric

+

+

This study summarizes major contribute from this research group concerning study of knee kinematics using robotic system with several inherent publications

Musahl et al.,19 2010

Cadaveric



+

Mechanized pivot-shift tests better than manual exams

Citak et al.,15 2011

Cadaveric



+

Mechanized pivot-shift tests better than manual exams

Comments

Table 1. Recent publications of robotic devices for knee laxity testing.

1.3 Robotic systems In order to overcome bias inherent to manual force application, different robotic systems have been proposed that comprise mechanical methods to apply load or torque in a controlled manner (magnitude, direction, rate).15,19,21,31-36 Recently published studies are summarised in table 1. The group from Pittsburgh has contributed great insight into the understanding of knee joint kinematics in multiple-degree-of-freedom using robotic systems.31

Lesiones ligamentosas de rodilla.indd 189

24/05/2012 18:13:21

190

H. Pereira, N. Sevivas, R. Pereira, A. Monteiro, J.M. Oliveira, R.L. Reis, J. Espregueira-Mendes

Considering anterior-posterior laxity alone, the Genurob (GNRB) knee laxity testing device (Genurob, Montenay, France), provides an anterior directed force to the posterior proximal calf region with the knee at 0° rotation and 20° flexion in a rigid leg support.21 The load is delivered gradually and the software compares side-to-side differences in the amount of anterior tibial translation. It also provides a force-displacement curve whose slopes reflect ligamentous elasticity. Hamstring relaxation status is controlled by superficial electrodes on the thigh. Authors could find differential laxity thresholds at 250 N to be 1.5 mm for partial and 3 mm for complete ruptures. They also produced insights about the contribution and influence of surrounding soft tissue structures and the role of ACL double-bundle concept. In cadaveric hip-to-toe models, Musahl et al.19 and Citak et al.15 were able to demonstrate that instrumented pivot-shift tests can produce more reliable and consistent measurements of pivot-shift phenomenon. Tsai et al.34 determined the reliability of a device to measure knee rotation in human subjects with normal knees including intra-tester, test-retest and inter-tester reliability. They concluded that the proposed method presents acceptable limits of reliability for clinical use and interpretation. Park et al.35 compared ten healthy men and ten healthy women with the knee at 60° of flexion. They concluded that women had increased external rotation laxity. Branch et al.36 also report similar gender related findings. Furthermore, the data from the robotic assessment of laxity were considered in order to detect the additional risk factors for ACL injury. Healthy knees of patients with previous contralateral ACL repair and knees of healthy volunteers were studied. Assuming that the opposite knee of patients with a previous ACL reconstruction present biomechanical characteristics of greater risk for ACL rupture, it was stated that knees with greater tibial internal rotation have higher risk for ACL injury when compared to healthy volunteers. Mayr et al.33 proposed a method for clinical use targeted at awake, non-anesthetised patients, which consists in measuring the anteroposterior translation and rotation of the knee joint. The device requires fixation of the foot at 30° of knee flexion with varus/valgus stress posts for the knee. Tibial external/internal rotation was imposed with a torque of 2 Nm on the foot rest with the ankle locked in dorsiflexion. Anterior translation of the tibia in relation to the femur was measured in neutral position, internal and external rotation. Intra- and inter-rater reliability was validated in ten healthy volunteers. Ten patients with isolated ACL rupture, ten patients with ACL rupture and medial instability and ten patients with ad-

Lesiones ligamentosas de rodilla.indd 190

24/05/2012 18:13:21

New tools for diagnosis, assessment of surgical outcome and follow-up

191

ditional lateral instability were evaluated and side-to-side differences were used for calculation. The authors concluded that it is possible to objectively differentiate isolated ACL rupture and ACL rupture combined with medial instability. The method proved to be reliable and reproducible by different examiners and by the same examiner at different times. All these systems have been used mainly for research purposes and have not yet been included in routine clinical practice. They have the merit of providing objective data related to joint laxity but are time-consuming and cannot provide information about any morphologic changes in the knee.

1.4 Stress radiography/radiostereometry The combination of a stress device and radiography (stress radiography) has been proposed both as a knee laxity measurement technique for ACL23,37,38 and as posterior cruciate ligament (PCL) assessment.39,40 The Telos device (Telos GmbH, Laubscher, Hölstein, Switzerland) is the most representative example of such a device. It makes it possible to measure anterior and posterior drawer displacements controlling the magnitude of load transmission. The method considers the displacement of the midpoint between the tangents to the posterior contours of the tibial condyles drawn perpendicular to the tibial plateau and relative to the position of the corresponding midpoint between the 2 posterior aspects of the femoral condyles. The intra- and inter-tester reliability of Telos device was reported by Staubli et al.41 This method presents an advantage over the previous ones, since it considers bony landmarks to measure translation thus avoiding issues related to softtissue artifact. However, it requires more equipment, personnel and additional exposure to radiation. No further information of knee joint soft tissue, cartilage or menisci status is provided. Radiostereometric analysis, originally presented by Selvik et al.42 was proposed as a method to enhance the precision of translation measurement of the knee joint by stress-radiography. This is an invasive method that relies on implantation of tantalum beads, but is highly accurate (within 0.1 mm). For this reason, it has also been proposed to assess migration of arthroplasty components throughout time. There are reports stating the advantage of the Telos method over KT-1000TM.23 But limitations have been recognised even combining radiostereometric analysis, based on the absence of a stress device that can produce reliable joint translation.43

Lesiones ligamentosas de rodilla.indd 191

24/05/2012 18:13:21

192

H. Pereira, N. Sevivas, R. Pereira, A. Monteiro, J.M. Oliveira, R.L. Reis, J. Espregueira-Mendes

1.5 Porto-knee testing device as a tool for instrumented evaluation during magnetic resonance imaging The Porto-knee testing device (PKTD) (see figure 1) is a knee laxity testing device for the measurement of anterior-posterior tibial translation and internal rotation of the tibia during the magnetic resonance imaging (MRI) examination, thus combining the assessment of “anatomy” and “function” during the same examination. PKTD is made of polyurethane, allowing it to be used during MRI scans, in positions in which the knee is placed under stress due to the inflation of cuffs, making it possible for the examiner to control the magnitude of load transmission up to 46.7 × 103 N/m2, applied in the posterior proximal calf region. The device can be adjusted at different degrees of knee flexion and different degrees of external/internal rotation inflated by the footplate. It can also be used for PCL evaluation by changing the position of the cuff thus transmitting force to the anterior aspect of the tibia. Measurements are achieved using sets of MRI images with 1mm spacing and 3D reconstruction upon load application. The measurement (in mm) is performed using a line perpendicular to tibial slope crossing the most posterior point of the tibial plateau and its distance to a parallel line crossing the most posterior point of the femoral condyle. This pro-

Figure 1. Photograph of the PKTD developed at the Saúde Atlântica F.C. Porto Sports Center.

Lesiones ligamentosas de rodilla.indd 192

24/05/2012 18:13:21

New tools for diagnosis, assessment of surgical outcome and follow-up

A

193

B

Figure 2. Photographs of PTKD: without pressure (A), and with pressure (B). Arrow indicates cuff inducing anterior tibial translation upon pressure application in posterior proximal calf region.

cess is repeated without and with pressure for medial and lateral compartments identifying the same points as bony landmarks (see figure 2). The difference in each of the two points of measurement is calculated between the two sets (without and with pressure) obtaining the anterior translation, in millimetres, for medial and lateral tibial plateaus (see figure 3). The method may include the assessment of ACL-deficient knees alone or in a side-by-side comparison. In a recent clinical study,44 it was demonstrated that the PKTD-MRI method is reliable in the assessment of anterior-posterior translation (comparing to KT1000TM) and rotatory laxity (compared to lateral pivot-shift under anaesthesia) of the ACL-deficient knee. It also showed the capacity to identify partial ruptures (confirmed later by arthroscopic findings), although this issue was not specifically addressed throughout the study. By putting stress on the ACL during the exam, the method makes it possible to simultaneously evaluate the mechanical behaviour of partial ruptures and improve the visualisation of “biological”/signal features of the ruptured and the remaining bundle. Ongoing study is now comparing the results of the method, considering different degrees of rotation during anterior-posterior load transmission that is aimed at improving the capacity to identify populations with increased risk factors for ACL rupture.

1.6 Intra-operative navigation Despite improving the pre-operatory clinical assessment, the previously described methods share the limitation of not providing a suitable tool to improve surgi-

Lesiones ligamentosas de rodilla.indd 193

24/05/2012 18:13:21

194

H. Pereira, N. Sevivas, R. Pereira, A. Monteiro, J.M. Oliveira, R.L. Reis, J. Espregueira-Mendes

A

B

C

D

Figure 3. MRI images of injured knee obtained using the PKTD: medial compartment without (A) and with pressure (B); and lateral compartment without (C) and with pressure (D).

cal precision or effectiveness nor to assist surgeons in intra-operative decision making. Surgical computer-assisted navigation may not only refine the evaluation of knee instability during surgery but also help clinicians understand the role of different ACL bundles during anatomical reconstruction.45 It has been stated that navigation can make it possible to quantify knee laxity examination.46 It also enables the testing of pathologic multiplanar or coupled knee motions, particularly in the setting of complex rotatory instability patterns.47 The repeatability of load application during clinical stability testing is still an issue to be considered, 48 in the same way as any type of manual clinical testing. Furthermore, the invasive profile of some of these systems and inherent costs, which are not yet reflected in the outcome, represent obstacles to the widespread application of these tools.

Lesiones ligamentosas de rodilla.indd 194

24/05/2012 18:13:22

New tools for diagnosis, assessment of surgical outcome and follow-up

195

2 Final remarks Manual testing during clinical examination is still useful and relevant, but mechanised and objective evaluation devices are now essential. It has been shown that the reliability of mechanised testing is better than manual examination. By better identifying patients with higher rotatory laxity after ACL rupture, clinicians will be able to distinguish the patients will benefit more from double-bundle reconstruction from those who can expect an effective result from single-bundle or augmentation procedures. Furthermore, methods that make it possible to detect risk factors might improve prevention strategies. The PKTD, which permits assessment of anteroposterior and rotatory laxity of the knee during MRI exams, proves to be a valuable option both in pre- and post-operative settings. It expands MRI evaluation, enabling it to assess morphology and biomechanical features of cruciate ligaments including partial ruptures. Tools suited to intra-operative application, such as “navigation”, may make valuable contributions towards improving technical issues in the near future. References 1. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W. The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med. 2007; 35: 223-7. 2. Lubowitz JH, Ahmad CS, Anderson K. Allinside anterior cruciate ligament graft-link technique: second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy. 2011; 27: 717-27. 3. Meredick RB, Vance KJ, Appleby D, Lubowitz JH. Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med. 2008; 36: 1414-21. 4. Ochi M, Adachi N, Deie M, Kanaya A. Anterior cruciate ligament augmentation procedure with a 1-incision technique: anteromedial bundle or posterolateral bundle reconstruction. Arthroscopy. 2006; 22: 463.e1-5. 5. Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N. Tibial rotation is not restored after ACL reconstruction with

Lesiones ligamentosas de rodilla.indd 195

6.

7.

8.

9.

10.

a hamstring graft. Clin Orthop Relat Res. 2007; 454: 89-94. Tashman S, Kolowich P, Collon D, Anderson K, Anderst W. Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res. 2007; 454: 66-73. Hemmerich A, van der Merwe W, Batterham M, Vaughan CL. Knee rotational laxity in a randomized comparison of single- versus double-bundle anterior cruciate ligament reconstruction. Am J Sports Med. 2011; 39: 48-56. Izawa T, Okazaki K, Tashiro Y, Matsubara H, Miura H, Matsuda S, et al. Comparison of rotatory stability after anterior cruciate ligament reconstruction between single-bundle and double-bundle techniques. Am J Sports Med. 2011; 39: 1470-7. Irrgang JJ, Bost JE, Fu FH. Re: Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med. 2009; 37: 421-2. Sonnery-Cottet B, Lavoie F, Ogassawara R, Scussiato RG, Kidder JF, Chambat P. Selec-

24/05/2012 18:13:23

196

11.

12.

13.

14.

15.

16.

17. 18.

19.

H. Pereira, N. Sevivas, R. Pereira, A. Monteiro, J.M. Oliveira, R.L. Reis, J. Espregueira-Mendes

tive anteromedial bundle reconstruction in partial ACL tears: a series of 36 patients with mean 24 months follow-up. Knee Surg Sports Traumatol Arthrosc. 2010; 18: 47-51. Van Dyck P, De Smet E, Veryser J, Lambrecht V, Gielen JL, Vanhoenacker FM, et al. Partial tear of the anterior cruciate ligament of the knee: injury patterns on MR imaging. Knee Surg Sports Traumatol Arthrosc. 2012; 20: 256-61. Branch TP, Mayr HO, Browne JE, Campbell JC, Stoehr A, Jacobs CA. Instrumented examination of anterior cruciate ligament injuries: minimizing flaws of the manual clinical examination. Arthroscopy. 2010; 26: 997-1004. Katz JW, Fingeroth RJ. The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med. 1986; 14: 88-91. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004; 32: 629-34. Citak M, Suero EM, Rozell JC, Bosscher MR, Kuestermeyer J, Pearle AD. A mechanized and standardized pivot shifter: technical description and first evaluation. Knee Surg Sports Traumatol Arthrosc. 2011; 19: 707-11. Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, et al. Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med. 2012; 40: 91-9. Lane CG, Warren R, Pearle AD. The pivot shift. J Am Acad Orthop Surg. 2008; 16: 679-88. Engebretsen L, Wijdicks CA, Anderson CJ, Westerhaus B, Laprade RF. Evaluation of a simulated pivot shift test: a biomechanical study. Knee Surg Sports Traumatol Arthrosc. 2011 Nov 5. [Epub ahead of print] Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD. Mechanized pivot shift test achieves greater accuracy than man-

Lesiones ligamentosas de rodilla.indd 196

20.

21.

22.

23.

24.

25.

26.

27.

28.

ual pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1208-13. Daniel DM, Stone ML, Sachs R, Malcom L. Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med. 1985; 13: 401-7. Robert H, Nouveau S, Gageot S, Gagniere B. A new knee arthrometer, the GNRB: experience in ACL complete and partial tears. Orthop Traumatol Surg Res. 2009; 95: 171-6. Boyer P, Djian P, Christel P, Paoletti X, Degeorges R. Reliability of the KT-1000 arthrometer (Medmetric) for measuring anterior knee laxity: comparison with Telos in 147 knees. Rev Chir Orthop Reparatrice Appar Mot. 2004; 90: 757-64. Jardin C, Chantelot C, Migaud H, Gougeon F, Debroucker MJ, Duquennoy A. Reliability of the KT-1000 arthrometer in measuring anterior laxity of the knee: comparative analysis with Telos of 48 reconstructions of the anterior cruciate ligament and intra- and interobserver reproducibility. Rev Chir Orthop Reparatrice Appar Mot. 1999; 85: 698-707. Myrer JW, Schulthies SS, Fellingham GW. Relative and absolute reliability of the KT2000 arthrometer for uninjured knees. Am J Sports Med. 1996; 24: 104-8. Kvist J. Sagittal plane translation during level walking in poor-functioning and well-functioning patients with anterior cruciate ligament deficiency. Am J Sports Med. 2004; 32: 1250-5. Oliver JH, Coughlin LP. Objective knee evaluation using the Genucom Knee Analysis System. Clinical implications. Am J Sports Med. 1987; 15: 571-8. Benvenuti JF, Vallotton JA, Meystre JL, Leyvraz PF. Objective assessment of the anterior tibial translation in Lachman test position. Comparison between three types of measurement. Knee Surg Sports Traumatol Arthrosc. 1998; 6: 215-9. Balasch H, Schiller M, Friebel H, Hoffmann F. Evaluation of anterior knee joint instability with the Rolimeter. A test in comparison with manual assessment and measuring with the KT-1000 arthrometer. Knee Surg Sports Traumatol Arthrosc. 1999; 7: 204-8.

24/05/2012 18:13:23

New tools for diagnosis, assessment of surgical outcome and follow-up

29. Highgenboten CL, Jackson A, Meske NB. Genucom, KT-1000, and Stryker knee laxity measuring device comparisons. Am J Sports Med. 1989; 17: 743-6. 30. Boniface RJ, Fu FH, Ilkhanipour K. Objective anterior cruciate ligament testing. Orthopedics. 1986; 9: 391-3. 31. Woo SLY, Fisher MB. Evaluation of knee stability with use of a robotic system. J Bone Joint Surg Am. 2009; 91(S1): 78-84. 32. Lob T, Verheyden AP, Josten Ch, F. S. The function of the ACL measured in an vertical opened MRI (0.5 Tesla). 12th ESSKA Congress. Innsbruck, Austria; 2006. 33. Mayr HO, Hoell A, Bernstein A, Hube R, Zeiler C, Kalteis T, et al. Validation of a measurement device for instrumented quantification of anterior translation and rotational assessment of the knee. Arthroscopy. 2011; 27: 1096-104. 34. Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ, et al. Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord. 2008; 9: 35. 35. Park HS, Wilson NA, Zhang LQ. Gender differences in passive knee biomechanical properties in tibial rotation. J Orthop Res. 2008; 26: 937-44. 36. Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA, et al. Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1379-84. 37. Jonsson H, Elmqvist LG, Karrholm J, FuglMeyer A. Lengthening of anterior cruciate ligament graft. Roentgen stereophotogrammetry of 32 cases 2 years after repair. Acta Orthop Scand. 1992; 63: 587-92. 38. Isberg J, Faxen E, Brandsson S, Eriksson BI, Karrholm J, Karlsson J. KT-1000 records smaller side-to-side differences than radiostereometric analysis before and after an ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006; 14: 529-35. 39. Schulz MS, Russe K, Lampakis G, Strobel MJ. Reliability of stress radiography for evaluation of posterior knee laxity. Am J Sports Med. 2005; 33: 502-6.

Lesiones ligamentosas de rodilla.indd 197

197

40. Jung TM, Reinhardt C, Scheffler SU, Weiler A. Stress radiography to measure posterior cruciate ligament insufficiency: a comparison of five different techniques. Knee Surg Sports Traumatol Arthrosc. 2006; 14: 1116-21. 41. Staubli HU, Noesberger B, Jakob RP. Stress radiography of the knee. Cruciate ligament function studied in 138 patients. Acta Orthop Scand Suppl. 1992; 249: 1-27. 42. Selvik G. Roentgen stereophotogrammetry. A method for the study of the kinematics of the skeletal system. Acta Orthop Scand Suppl. 1989; 232: 1-51. 43. Sorensen OG, Larsen K, Jakobsen BW, Kold S, Hansen TB, Lind M, et al. The combination of radiostereometric analysis and the Telos stress device results in poor precision for knee laxity measurements after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011; 19: 355-62. 44. Espregueira-Mendes JD, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A, et al. Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc. 2012; 20: 671-8. 45. Miura K, Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S. Intraoperative comparison of knee laxity between anterior cruciate ligament-reconstructed knee and contralateral stable knee using navigation system. Arthroscopy. 2010; 26: 1203-11. 46. Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M. New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc. 2006; 14: 811-6. 47. Pearle AD, Solomon DJ, Wanich T, MoreauGaudry A, Granchi CC, Wickiewicz TL, et al. Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med. 2007; 35: 1315-20. 48. Yamamoto Y, Ishibashi Y, Tsuda E, Tsukada H, Maeda S, Toh S. Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees. Sports Med Arthrosc Rehabil Ther Technol. 2010; 2: 27.

24/05/2012 18:13:23

Lesiones ligamentosas de rodilla.indd 198

24/05/2012 18:13:23

Loading...

Lesiones ligamentosas de rodilla.indd - repositorium – Uminho

José A. Hernández Hermoso Juan C. Monllau García Lesiones ligamentosas de la rodilla L 9 788415 340263 ISBN 978-84-15340-26-3 Lesiones ligamentos...

305KB Sizes 1 Downloads 0 Views

Recommend Documents

Fulltexts - repositorium – Uminho
This book is available as ebook under ISBN 978-3-00-053685-4. Bibliografische Information der Deutschen .... ASSOCIAÇÃ

Sao Cucufate.pdf - repositorium – Uminho
OS VISITANTES. Em relação à tipologia do público alvo apoiando-nos na experiência e testemunho do recepcionista de

geographical imaginations - repositorium – Uminho
. [Acessed 5 May 2012]. ...... e Espaço. Rio de Janeiro: EdUERJ, pp. 95-127. Berdoulay, V. and Gomes, P.C.C, 2010. Intr

1.Acknowledgments, Abstract, Index - repositorium – Uminho
Although we still don't know exactly the susceptibility genes for schizophrenia, the common assumption is that this diso

Luís António Martins dos Santos - repositorium – Uminho
Gostaria de começar por agradecer ao meu orientador, o Professor Manuel Pinto, por ser bem mais do que um guia com o tra

Vulvovaginal candidiasis: Epidemiology - repositorium – Uminho
Oct 28, 2015 - Abstract. Vulvovaginal candidiasis (VVC) is an infection caused by Candida species that affects millions

Escola de Ciências - repositorium – Uminho - Universidade do Minho
contacto de silicone hidrogel mediante técnicas de refractometria. No que diz respeito à microscopia, a técnica que p

Untitled - repositorium – Uminho - Universidade do Minho
Institute for Education, 2003. http://www.bie.org/images/uploads/general/20fa7d42c216e2ec171a212e97fd4a9e.pdf ...... tem

Estudos Performativos-1.indd - repositorium – Uminho - Universidade
cura demonstrar os erros das duas críticas anteriores e evidencia os atributos da crítica ..... To present my idea in a

Capitulo_analise do discurso_final1 - repositorium – Uminho
que muita pesquisa de Análise do Discurso é realizada quer na sociologia, psicologia, comunicação, estudos literári